Difference between revisions of "Main Page"

From Nekcem
Jump to navigationJump to search
 
(53 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<big>'''Welcome to NekCEM'''</big>
 +
 +
NekCEM https://svn.mcs.anl.gov/repos/NEKCEM is a high-fidelity, open-source electromagnetics solver based on spectral element and spectral element discontinuous Galerkin methods, written in Fortran and C. The code is actively developed at Mathematics and Computer Science Division of Argonne National Laboratory.
 +
 +
----
 +
 
<big>'''Features'''</big>
 
<big>'''Features'''</big>
  
NekCEM is a high-fidelity high-order spectral-element discontinuous Galerkin (SEDG) Maxwell solver that targets predicting optimal designs of next-generation electromagnetic devices such as accelerator components for the International Linear Collider or the Large Hadron Collider, nanosensors
+
* Spectral element discretizations
for molecular detection, and photovoltaic solar cells with high energy-conversion efficiency.
+
* Discontinuous Galerkin approach
NekCEM is open source and available at https://svn.mcs.anl.gov/repos/NEKCEM
+
* Hexahedral body conforming meshes
for easy access to the current version. The package has a number of examples for testing the convergence and performance of the code for different problem configurations in electromagnetics. Current capabilities include 2D/3D simulations for surface plasmonics and light transmission calculations, wakefield and wakepotential calculations, waveguides, and electric potential calculations. NekCEM is written in Fortran and C, using MPI for parallel communication. The code uses the core infrastructure of the incompressible Navier-Stokes solver Nek5000 [http://nek5000.mcs.anl.gov].
+
* The 4th-order Runge-Kutta timestepping
 +
* Exponential time integrations
 +
* High parallel efficiency scaling over 200,000 cores
 +
* Parallel I/O scaling over 65,000 cores
 +
* Hybrid programming MPI/multithreading
 +
* Light transmission calculations for nanodevices
 +
* Wakepotential calculations for accelerator devices
  
* [https://wiki.mcs.anl.gov/nekcem/index.php/Main_Page/Parallel Parallel Performance]
+
<big>'''Upcoming'''</big>
* [https://wiki.mcs.anl.gov/nekcem/index.php/Main_Page/ParallelIO Parallel IO Performance]
 
  
 +
* Acoustic solver for scattering problems
 +
* Preconditioning with fast diagonalization method
 +
* Schrodinger solver for quantum dot interactions with plasmonic nanostructures
 +
* Drift-diffusion solver
  
 +
----
  
<big>'''Instruction'''</big>
+
<big> '''Current Developers''' </big>
  
* [https://wiki.mcs.anl.gov/nekcem/index.php/Main_Page/DATA Documentation for ''data file setting'']
+
Misun Min [http://www.mcs.anl.gov/~mmin], Matthew Otten (Physics/Cornell University),  Ying He (Math/UC Davis)
  
* [https://wiki.mcs.anl.gov/nekcem/index.php/Main_Page/PIO Documentation for ''parallel I/O'' option]
+
<big> '''Contributors''' </big>
  
* [https://wiki.mcs.anl.gov/nekcem/index.php/Main_Page/RST Documentation for ''restart'' option]
+
Jing Fu (RPI), Azamat Mametjanov, Aaron Vose (Cray Inc.), John Levesque (Cray Inc.)
  
* [https://wiki.mcs.anl.gov/nekcem/index.php/Main_Page/run Documentation for ''how to compile/run'']
+
<big> '''Related Projects''' </big>
  
 +
NekLBM [https://neklbm.mcs.anl.gov],
 +
Nek5000 [https://nek5000.mcs.anl.gov]
  
<big> '''Current Developers''' </big>
+
----
 
 
Misun Min *[http://www.mcs.anl.gov/~mmin], Jing Fu [http://www.cs.rpi.edu/~fuj/]
 
  
 +
<big> '''Related Publications''' </big>
  
== Getting started ==
+
* Y. He, M. Min, D. Nicholls, A high-order spectral element with transparent boundary conditions for periodic layered media, 2013.
Consult the [http://meta.wikimedia.org/wiki/Help:Contents User's Guide] for information on using the wiki software.
+
* M. Min and P. Fischer, An efficient high-order time integration method for spectral-element discontinuous Galerkin simulations in electromagnetics, Journal of Scientific Computing, published online, 2013.
* [http://www.mediawiki.org/wiki/Manual:Configuration_settings Configuration settings list]
+
* M. Min, J. Fu, A. Mametjanov, Hybrid programming and performance for beam propagation modeling, Proceedings of International Computational Accelerator Physics Conference (ICAP) 2012, FRSAC1, 2012.
* [http://www.mediawiki.org/wiki/Manual:FAQ MediaWiki FAQ]
+
* J. Fu, M. Min, R. Latham, C. Carothers, I/O Threads to reduce checkpoint blocking for an electromagnetics solver on Blue Gene/P and Cray XK6, ROSS '12 Proceedings of the 2nd International Workshop on Runtime and Operating Systems for Supercomputers in conjunction with ICS 2012, No. 2, 2012.  
* [https://lists.wikimedia.org/mailman/listinfo/mediawiki-announce MediaWiki release mailing list]
+
* J. Fu, M. Min, R. Latham, C. Carothers, Parallel I/O performance for application-level checkpointing on the Blue Gene/P system, CLUSTER’11, Proceedings of the 2011 IEEE International Conference on Cluster Computing, pp. 465-473, 2011.  
 +
* M. Min, P. Fischer, J. Montgomery, S. K. Gray, Large-scale electromagnetic modeling based on high-order methods: Nanoscience applications, Journal of Physics: Conference Series, 180, 012016, 2009.
 +
* M. Min, P. Fischer, Spectral-element discontinuous Galerkin (SEDG) simulations with a moving window algorithm for wakefield calculations, Proceedings of Particle Accelerator conference (PAC09), TH5PFP037, 2009
 +
* M. Min, P. Fischer, Y-C. Chae, Wake fields for TESLA cavity structures: Spectral element discontinuous Galerkin simulations, Proceedings Of RF Superconductivity (SRF07), TUP34, 2007.

Latest revision as of 14:59, 18 May 2015

Welcome to NekCEM

NekCEM https://svn.mcs.anl.gov/repos/NEKCEM is a high-fidelity, open-source electromagnetics solver based on spectral element and spectral element discontinuous Galerkin methods, written in Fortran and C. The code is actively developed at Mathematics and Computer Science Division of Argonne National Laboratory.


Features

  • Spectral element discretizations
  • Discontinuous Galerkin approach
  • Hexahedral body conforming meshes
  • The 4th-order Runge-Kutta timestepping
  • Exponential time integrations
  • High parallel efficiency scaling over 200,000 cores
  • Parallel I/O scaling over 65,000 cores
  • Hybrid programming MPI/multithreading
  • Light transmission calculations for nanodevices
  • Wakepotential calculations for accelerator devices

Upcoming

  • Acoustic solver for scattering problems
  • Preconditioning with fast diagonalization method
  • Schrodinger solver for quantum dot interactions with plasmonic nanostructures
  • Drift-diffusion solver

Current Developers

Misun Min [1], Matthew Otten (Physics/Cornell University), Ying He (Math/UC Davis)

Contributors

Jing Fu (RPI), Azamat Mametjanov, Aaron Vose (Cray Inc.), John Levesque (Cray Inc.)

Related Projects

NekLBM [2], Nek5000 [3]


Related Publications

  • Y. He, M. Min, D. Nicholls, A high-order spectral element with transparent boundary conditions for periodic layered media, 2013.
  • M. Min and P. Fischer, An efficient high-order time integration method for spectral-element discontinuous Galerkin simulations in electromagnetics, Journal of Scientific Computing, published online, 2013.
  • M. Min, J. Fu, A. Mametjanov, Hybrid programming and performance for beam propagation modeling, Proceedings of International Computational Accelerator Physics Conference (ICAP) 2012, FRSAC1, 2012.
  • J. Fu, M. Min, R. Latham, C. Carothers, I/O Threads to reduce checkpoint blocking for an electromagnetics solver on Blue Gene/P and Cray XK6, ROSS '12 Proceedings of the 2nd International Workshop on Runtime and Operating Systems for Supercomputers in conjunction with ICS 2012, No. 2, 2012.
  • J. Fu, M. Min, R. Latham, C. Carothers, Parallel I/O performance for application-level checkpointing on the Blue Gene/P system, CLUSTER’11, Proceedings of the 2011 IEEE International Conference on Cluster Computing, pp. 465-473, 2011.
  • M. Min, P. Fischer, J. Montgomery, S. K. Gray, Large-scale electromagnetic modeling based on high-order methods: Nanoscience applications, Journal of Physics: Conference Series, 180, 012016, 2009.
  • M. Min, P. Fischer, Spectral-element discontinuous Galerkin (SEDG) simulations with a moving window algorithm for wakefield calculations, Proceedings of Particle Accelerator conference (PAC09), TH5PFP037, 2009
  • M. Min, P. Fischer, Y-C. Chae, Wake fields for TESLA cavity structures: Spectral element discontinuous Galerkin simulations, Proceedings Of RF Superconductivity (SRF07), TUP34, 2007.